Wired embedded networks must include multicast authentication to prevent masquerade attacks within the network. However, unique constraints for these networks make most existing multicast authentication techniques impractical. Our previous work provides multicast authentication for time-triggered applications on embedded networks by validating truncated message authentication codes across multiple packets. In this work, we improve overall bandwidth efficiency and reduce authentication latency by using unanimous voting on message value and validity amongst a group of nodes. This technique decreases the probability of successful per-packet forgery by using one extra bit per additional voter, regardless of the number of total receivers. This can permit using fewer authentication bits per receiver. We derive an upper bound on the probability of successful forgery and experimentally verify it using simulated attacks. For example, we show that with two authentication bits per receiver, addi...