In the 1980s, plot units were proposed as a conceptual knowledge structure for representing and summarizing narrative stories. Our research explores whether current NLP technology can be used to automatically produce plot unit representations for narrative text. We create a system called AESOP that exploits a variety of existing resources to identify affect states and applies "projection rules" to map the affect states onto the characters in a story. We also use corpus-based techniques to generate a new type of affect knowledge base: verbs that impart positive or negative states onto their patients (e.g., being eaten is an undesirable state, but being fed is a desirable state). We harvest these "patient polarity verbs" from a Web corpus using two techniques: co-occurrence with Evil/Kind Agent patterns, and bootstrapping over conjunctions of verbs. We evaluate the plot unit representations produced by our system on a small collection of Aesop's fables.