This paper proposes a distributed Canny edge detection algorithm which can be mapped onto multi-core architectures for high throughput applications. In contrast to the conventional Canny edge detection algorithm which makes use of the global image gradient histogram to determine the threshold for edge detection, the proposed algorithm adaptively computes the edge detection threshold based on the local distribution of the gradients in the considered image block. The efficacy of the distributed Canny in detecting psycho-visually important edges is validated using a visual sharpness metric. The proposed distributed Canny edge detection algorithm has the capacity to scale up the throughput adaptively, based on the number of computing engines. The algorithm achieves about 72 times speed up for a 16-core architecture, without any change in performance. Furthermore, the internal memory requirements are significantly reduced especially for smaller block sizes. For instance, if a 512 512 image...