A Cyber-Physical System (CPS) integrates physical devices (e.g., sensors, cameras) with cyber (or informational) components to form a situation-integrated analytical system that responds intelligently to dynamic changes of the real-world scenarios. One key issue in CPS research is trustworthiness analysis of the observed data: Due to technology limitations and environmental influences, the CPS data are inherently noisy that may trigger many false alarms. It is highly desirable to sift meaningful information from a large volume of noisy data. In this paper, we propose a method called Tru-Alarm which finds out trustworthy alarms and increases the feasibility of CPS. Tru-Alarm estimates the locations of objects causing alarms, constructs an object-alarm graph and carries out trustworthiness inferences based on linked information in the graph. Extensive experiments show that Tru-Alarm filters out noises and false information efficiently and guarantees not missing any meaningful alarms.