Sciweavers

ICIP
2010
IEEE

Combining free energy score spaces with information theoretic kernels: Application to scene classification

13 years 10 months ago
Combining free energy score spaces with information theoretic kernels: Application to scene classification
Most approaches to learn classifiers for structured objects (e.g., images) use generative models in a classical Bayesian framework. However, state-of-the-art classifiers for vectorial data (e.g., support vector machines) are learned discriminatively. A generative embedding is a mapping from the object space into a fixed dimensional score space, induced by a generative model, usually learned from data. The fixed dimensionality of these generative score spaces makes them adequate for discriminative learning of classifiers, thus bringing together the best of the discriminative and generative paradigms. In particular, it was recently shown that this hybrid approach outperforms a classifier obtained directly for the generative model upon which the score space was built. Using a generative embedding involves two steps: (i) defining and learning the generative model and using it to build the embedding; (ii) discriminatively learning a (maybe kernel) classifier on the adopted score space. The...
Manuele Bicego, Alessandro Perina, Vittorio Murino
Added 12 Feb 2011
Updated 12 Feb 2011
Type Journal
Year 2010
Where ICIP
Authors Manuele Bicego, Alessandro Perina, Vittorio Murino, André F. T. Martins, Pedro M. Q. Aguiar, Mário A. T. Figueiredo
Comments (0)