Sciweavers

KDD
2010
ACM

Trust network inference for online rating data using generative models

13 years 9 months ago
Trust network inference for online rating data using generative models
In an online rating system, raters assign ratings to objects contributed by other users. In addition, raters can develop trust and distrust on object contributors depending on a few rating and trust related factors. Previous study has shown that ratings and trust links can influence each other but there has been a lack of a formal model to relate these factors together. In this paper, we therefore propose Trust Antecedent Factor (TAF) Model, a novel probabilistic model that generate ratings based on a number of rater's and contributor's factors. We demonstrate that parameters of the model can be learnt by Collapsed Gibbs Sampling. We then apply the model to predict trust and distrust between raters and review contributors using a real data-set. Our experiments have shown that the proposed model is capable of predicting both trust and distrust in a unified way. The model can also determine user factors which otherwise cannot be observed from the rating and trust data. Categor...
Freddy Chong Tat Chua, Ee-Peng Lim
Added 14 Feb 2011
Updated 14 Feb 2011
Type Journal
Year 2010
Where KDD
Authors Freddy Chong Tat Chua, Ee-Peng Lim
Comments (0)