In this paper, we focus on a recent Web trend called microblogging, and in particular a site called Twitter. The content of such a site is an extraordinarily large number of small textual messages, posted by millions of users, at random or in response to perceived events or situations. We have developed an algorithm that takes a trending phrase or any phrase specified by a user, collects a large number of posts containing the phrase, and provides an automatically created summary of the posts related to the term. We present examples of summaries we produce along with initial evaluation.
Beaux Sharifi, Mark-Anthony Hutton, Jugal K. Kalit