Abstract. Domain decomposition for regular meshes on parallel computers has traditionally been performed by attempting to exactly partition the work among the available processors (now cores). However, these strategies often do not consider the inherent system noise which can hinder MPI application scalability to emerging peta-scale machines with 10000+ nodes. In this work, we suggest a solution that uses a tunable hybrid static/dynamic scheduling strategy that can be incorporated into current MPI implementations of mesh codes. By applying this strategy to a 3D jacobi algorithm, we achieve performance gains of at least 16% for 64 SMP nodes.