This work investigates supervised word alignment methods that exploit inversion transduction grammar (ITG) constraints. We consider maximum margin and conditional likelihood objectives, including the presentation of a new normal form grammar for canonicalizing derivations. Even for non-ITG sentence pairs, we show that it is possible learn ITG alignment models by simple relaxations of structured discriminative learning objectives. For efficiency, we describe a set of pruning techniques that together allow us to align sentences two orders of magnitude faster than naive bitext CKY parsing. Finally, we introduce many-to-one block alignment features, which significantly improve our ITG models. Altogether, our method results in the best reported AER numbers for Chinese-English and