Sciweavers

AVSS
2009
IEEE

3D Face Recognition Using Multiview Keypoint Matching

13 years 10 months ago
3D Face Recognition Using Multiview Keypoint Matching
A novel algorithm for 3D face recognition based point cloud rotations, multiple projections, and voted keypoint matching is proposed and evaluated. The basic idea is to rotate each 3D point cloud representing an individual's face around the x, y or z axes, iteratively projecting the 3D points onto multiple 2.5D images at each step of the rotation. Labelled keypoints are then extracted from the resulting collection of 2.5D images, and this much smaller set of keypoints replaces the original face scan and its projections in the face database. Unknown test faces are recognised firstly by performing the same multiview keypoint extraction technique, and secondly, the application of a new weighted keypoint matching algorithm. In an extensive evaluation using the GavabDB 3D face recognition dataset (61 subjects, 9 scans per subject), our method achieves up to 95% recognition accuracy for faces with neutral expressions only, and over 90% accuracy for face recognition where expressions (s...
Michael Mayo, Edmond Zhang
Added 16 Feb 2011
Updated 16 Feb 2011
Type Journal
Year 2009
Where AVSS
Authors Michael Mayo, Edmond Zhang
Comments (0)