Current automatic sign language recognition (ASLR) seldom uses perceptual knowledge about the recognition of sign language. Using such knowledge can improve ASLR because it can give an indication which elements or phases of a sign are important for its meaning. Also, the current generation of data-driven ASLR methods has shortcomings which may not be solvable without the use of knowledge on human sign language processing. Handling variation in the precise execution of signs is an example of such shortcomings: data-driven methods (which include almost all current methods) have difficulty recognizing signs that deviate too much from the examples that were used to train the method. Insight into human sign processing is needed to solve these problems. Perceptual research on sign language can provide such insights. This paper discusses knowledge derived from a set of sign perception experiments, and the application of such knowledge in ASLR. Among the findings are the facts that not all ph...
Gineke A. ten Holt, Jeroen Arendsen, Huib de Ridde