This paper investigates a new learning formulation called dynamic group sparsity. It is a natural extension of the standard sparsity concept in compressive sensing, and is motivated by the observation that in some practical sparse data the nonzero coefficients are often not random but tend to be clustered. Intuitively, better results can be achieved in these cases by reasonably utilizing both clustering and sparsity priors. Motivated by this idea, we have developed a new greedy sparse recovery algorithm, which prunes data residues in the iterative process according to both sparsity and group clustering priors rather than only sparsity as in previous methods. The proposed algorithm can recover stably sparse data with clustering trends using far fewer measurements and computations than current state-of-the-art algorithms with provable guarantees. Moreover, our algorithm can adaptively learn the dynamic group structure and the sparsity number if they are not available in the practical ap...
Junzhou Huang, Xiaolei Huang, Dimitris N. Metaxas