There is a huge wealth of sequence data available, for example, customer purchase histories, program execution traces, DNA, and protein sequences. Analyzing this wealth of data to mine important knowledge is certainly a worthwhile goal. In this paper, as a step forward to analyzing patterns in sequences, we introduce the problem of mining closed repetitive gapped subsequences and propose efficient solutions. Given a database of sequences where each sequence is an ordered list of events, the pattern we would like to mine is called repetitive gapped subsequence, which is a subsequence (possibly with gaps between two successive events within it) of some sequences in the database. We introduce the concept of repetitive support to measure how frequently a pattern repeats in the database. Different from the sequential pattern mining problem, repetitive support captures not only repetitions of a pattern in different sequences but also the repetitions within a sequence. Given a userspecified s...