OLAP systems offering multidimensional and large information space cannot solely rely on standard navigation but need to apply recommendations to make the analysis process easy and to help users quickly find relevant data for decision-making. In this paper, we propose a recommendation methodology for assisting the user during his decision-support analysis. The system helps the user in querying multidimensional data and exposes him to the most interesting patterns, i.e. it provides to the user anticipatory as well as alternative decisionsupport data. We provide a preference-based approach to apply such methodology.