In this paper we present an algorithm which uses adaptive selection of low-level features for main subject detection. The algorithm first computes low-level features such as contrast and sharpness, each computed in a block-based fashion. Next, the algorithm quantifies the usefulness of each feature by using both statistical and geometric information measured across blocks. Finally, the saliency of each block is determined via a weighted linear combination of the features, where the weights are chosen based on each feature's estimated usefulness. Our results demonstrate that the adaptive nature of this algorithm allows it to perform competitively with other techniques, while maintaining very low computational complexity.
Cuong T. Vu, Damon M. Chandler