Sciweavers

ICRA
2009
IEEE

Temporal stabilization of discrete movement in variable environments: An attractor dynamics approach

13 years 10 months ago
Temporal stabilization of discrete movement in variable environments: An attractor dynamics approach
The ability to generate discrete movement with distinct and stable time courses is important for interaction scenarios both between different robots and with human partners, for catching and interception tasks, and for timed action sequences. In dynamic environments, where trajectories are evolving on-line, this is not a trivial task. The dynamical systems approach to robotics provides a framework for robust incorporation of fluctuating sensor information, but control of movement time is usually restricted to rhythmic motion and realized through stable limit cycles. The present work uses a Hopf oscillator to produce discrete motion and formulates an on-line adaptation rule to stabilize total movement time against a wide range of disturbances. This is integrated into a dynamical systems framework for the sequencing of movement phases and for directional navigation, using 2D-planar motion as an example. The approach is demonstrated on a Khepera mobile unit in order to show its reliabilit...
Matthias Tuma, Ioannis Iossifidis, Gregor Schö
Added 19 Feb 2011
Updated 19 Feb 2011
Type Journal
Year 2009
Where ICRA
Authors Matthias Tuma, Ioannis Iossifidis, Gregor Schöner
Comments (0)