In the context of non-Gaussian polarimetric clutter models, this paper presents an application of the recent advances in the field of Spherically Invariant Random Vectors (SIRV) modelling for coherency matrix estimation in heterogeneous clutter. The complete description of the POLSAR data set is achieved by estimating the span and the normalized coherency independently. The normalized coherency describes the polarimetric diversity, while the span indicates the total received power. Based on the SIRV model, a new maximum likelihood distance measure is introduced for unsupervised POLSAR segmentation. The proposed method is tested with airborne POLSAR images provided by the RAMSES system.