This paper deals with a new method for recognition of offline Handwritten noncompound Devnagari Characters in two stages. It uses two well known and established pattern recognition techniques: one using neural networks and the other one using minimum edit distance. Each of these techniques is applied on different sets of characters for recognition. In the first stage, two sets of features are computed and two classifiers are applied to get higher recognition accuracy. Two MLP's are used separately to recognize the characters. For one of the MLP's the characters are represented with their shadow features and for the other chain code histogram feature is used. The decision of both MLP's is combined using weighted majority scheme. Top three results produced by combined MLP's in the first stage are used to calculate the relative difference values. In the second stage, based on these relative differences character set is divided into two. First set consists of the chara...