Scalar quantization is the most practical and straightforward approach to signal quantization. However, it has been shown that scalar quantization of oversampled or Compressively Sensed signals can be inefficient in terms of the rate-distortion trade-off, especially as the oversampling rate or the sparsity of the signal increases. In this paper, we modify the scalar quantizer to have discontinuous quantization regions. We demonstrate that with this modification it is possible to achieve exponential decay of the quantization error as a function of the oversampling rate instead of the quadratic decay exhibited by current approaches. We further demonstrate that it is possible to further reduce the quantization error by incorporating side information on the acquired signal, such as sparse signal models or signal similarity with known signals. Our approach is universal in the sense that prior knowledge of the signal model is not necessary in the quantizer design.