We propose a new approach to semi-supervised clustering that utilizes boosting to simultaneously learn both a similarity measure and a clustering of the data from given instancelevel must-link and cannot-link constraints. The approach is distinctive in that it uses a supervising feedback loop to gradually update the similarity while at the same time guiding an underlying unsupervised clustering algorithm. Our approach is grounded in the theory of boosting. We provide three examples of the clustering algorithm on real datasets.
Bryan Conroy, Yongxin Taylor Xi, Peter J. Ramadge