Sciweavers

MICCAI
2003
Springer

An Automatic System for Classification of Nuclear Sclerosis from Slit-Lamp Photographs

15 years 1 months ago
An Automatic System for Classification of Nuclear Sclerosis from Slit-Lamp Photographs
A robust and automatic system has been developed to detect the visual axis and extract important feature landmarks from slit-lamp photographs, and objectively grade the severity of nuclear sclerosis based on the intensities of those landmarks. Using linear regression, we first select the features that play important roles in classification, and then fit a linear grading function. We evaluated the grading function using human grades as error bounds for "ground truth" grades, and compared the machine grades with the human grades. As expected, the automatic system significantly speeds up the process of grading, and grades computed are consistent and reproducible. Machine grading time for one image is less than 2 seconds on a Pentium III 996MHz machine while human grading takes about 2 minutes. Statistical results show that the predicted grades by the system are very reliable. For the testing set of 141 images, with correct grading defined by a tolerance of one grade level differ...
Shaohua Fan, Charles R. Dyer, Larry Hubbard, Barba
Added 15 Nov 2009
Updated 15 Nov 2009
Type Conference
Year 2003
Where MICCAI
Authors Shaohua Fan, Charles R. Dyer, Larry Hubbard, Barbara Klein
Comments (0)