Using methods from the computational sciences to improve the quality of health care is an important part of current medical progress. A particulary complex field is surgery simulation, where the fidelity of the systems is still unsatisfactory. We present a finite element system based on a sophisticated material law, better suited for dynamical computations than the standard approaches. To balance computational cost, a hierarchical basis is employed, allowing detail where needed. For time integration the use of a stabilized Runge-Kutta method is proposed.
Gerhard F. Buess, Joachim Gross, Michael Hauth, Wo