In this paper, we propose a novel framework to enrich Translation Memory (TM) systems with Statistical Machine Translation (SMT) outputs using ranking. In order to offer the human translators multiple choices, instead of only using the top SMT output and top TM hit, we merge the N-best output from the SMT system and the k-best hits with highest fuzzy match scores from the TM system. The merged list is then ranked according to the prospective post-editing effort and provided to the translators to aid their work. Experiments show that our ranked output achieve 0.8747 precision at top 1 and 0.8134 precision at top 5. Our framework facilitates a tight integration between SMT and TM, where full advantage is taken of TM while high quality SMT output is availed of to improve the productivity of human translators.