Abstract. We perform discriminative analysis of brain structures using morphometric information. Spherical harmonics technique and point distribution model are used for shape description. Classification is performed using linear discriminants and support vector machines with several feature selection approaches. We consider both inclusion and exclusion of volume information in the discrimination. We perform extensive experimental studies by applying different combinations of techniques to hippocampal data in schizophrenia and achieve best jackknife classification accuracies of 95% (whole set) and 90% (right-handed males), respectively. Our results find that the left hippocampus is a better predictor than the right in the complete dataset, but that the right hippocampus is a stronger predictor than the left in the right-handed male subset. We also propose a new method for visualization of discriminative patterns.