Twitter, Facebook, and other related systems that we call social awareness streams are rapidly changing the information and communication dynamics of our society. These systems, where hundreds of millions of users share short messages in real time, expose the aggregate interests and attention of global and local communities. In particular, emerging temporal trends in these systems, especially those related to a single geographic area, are a significant and revealing source of information for, and about, a local community. This study makes two essential contributions for interpreting emerging temporal trends in these information systems. First, based on a large dataset of Twitter messages from one geographic area, we develop a taxonomy of the trends present in the data. Second, we identify important dimensions according to which trends can be categorized, as well as the key distinguishing features of trends that can be derived from their associated messages. We quantitatively examine t...