Sciweavers

JSCIC
2011

An Asymptotic Preserving Scheme for the ES-BGK Model of the Boltzmann Equation

13 years 7 months ago
An Asymptotic Preserving Scheme for the ES-BGK Model of the Boltzmann Equation
In this paper, we study a time discrete scheme for the initial value problem of the ES-BGK kinetic equation. Numerically solving these equations are challenging due to the nonlinear stiff collision (source) terms induced by small mean free or relaxation time. We study an implicit-explicit (IMEX) time discretization in which the convection is explicit while the relaxation term is implicit to overcome the stiffness. We first show how the implicit relaxation can be solved explicitly, and then prove asymptotically that this time discretization drives the density distribution toward the local Maxwellian when the mean free time goes to zero while the numerical time step is held fixed. This naturally imposes an asymptotic-preserving scheme in the Euler limit. The scheme so designed does not need any nonlinear iterative solver for the implicit relaxation term. Moreover, it can capture the macroscopic fluid dynamic (Euler) limit even if the small scale determined by the Knudsen number is n...
Francis Filbet, Shi Jin
Added 14 May 2011
Updated 14 May 2011
Type Journal
Year 2011
Where JSCIC
Authors Francis Filbet, Shi Jin
Comments (0)