We consider the problem of optimal channel access to provide quality of service (QoS) for data transmission in cognitive vehicular networks. In such a network the vehicular nodes can opportunistically access the radio channels (referred to as shared-use channels) which are allocated to licensed users. Also, they are able to reserve a channel for dedicated access (referred to as exclusive-use channel) for data transmission. A channel access management framework is developed for cluster-based communication among vehicular nodes. This framework has three components: opportunistic access to shared-use channels, reservation of exclusive-use channel, and cluster size control. A hierarchical optimization model is then developed for this framework to obtain the optimal policy. The objective of the optimization model is to maximize the utility of the vehicular nodes in a cluster and to minimize the cost of reserving exclusive-use channel while the QoS requirements of data transmission (for veh...