Top-k queries are widely applied for retrieving a ranked set of the k most interesting objects based on the individual user preferences. As an example, in online marketplaces, customers (users) typically seek a ranked set of products (objects) that satisfy their needs. Reversing top-k queries leads to a query type that instead returns the set of customers that find a product appealing (it belongs to the top-k result set of their preferences). In this paper, we address the challenging problem of processing queries that identify the top-m most influential products to customers, where influence is defined as the cardinality of the reverse top-k result set. This definition of influence is useful for market analysis, since it is directly related to the number of customers that value a particular product and, consequently, to its visibility and impact in the market. Existing techniques require processing a reverse top-k query for each object in the database, which is prohibitively expensive...