Sciweavers

SIAMIS
2010

Smoothing Nonlinear Conjugate Gradient Method for Image Restoration Using Nonsmooth Nonconvex Minimization

13 years 7 months ago
Smoothing Nonlinear Conjugate Gradient Method for Image Restoration Using Nonsmooth Nonconvex Minimization
Image restoration problems are often converted into large-scale, nonsmooth and nonconvex optimization problems. Most existing minimization methods are not efficient for solving such problems. It is well-known that nonlinear conjugate gradient methods are preferred to solve large-scale smooth optimization problems due to their simplicity, low storage, practical computation efficiency and nice convergence properties. In this paper, we propose a smoothing nonlinear conjugate gradient method where an intelligent scheme is used to update the smoothing parameter at each iteration and guarantees that any accumulation point of a sequence generated by this method is a Clarke stationary point of the nonsmooth and nonconvex optimization problem. Moreover, we present a class of smoothing functions and show their approximation properties. This method is easy to implement without adding any new variables. Three image restoration problems with different pixels and different regularization terms are ...
Xiaojun Chen, Weijun Zhou
Added 21 May 2011
Updated 21 May 2011
Type Journal
Year 2010
Where SIAMIS
Authors Xiaojun Chen, Weijun Zhou
Comments (0)