Sciweavers

MICCAI
2005
Springer

Tissue Classification of Noisy MR Brain Images Using Constrained GMM

15 years 1 months ago
Tissue Classification of Noisy MR Brain Images Using Constrained GMM
We present an automated algorithm for tissue segmentation of noisy, low contrast magnetic resonance (MR) images of the brain. We use a mixture model composed of a large number of Gaussians, with each brain tissue represented by a large number of the Gaussian components in order to capture the complex tissue spatial layout. The intensity of a tissue is considered a global feature and is incorporated into the model through parameter tying of all the related Gaussians. The EM algorithm is utilized to learn the parameter-tied Gaussian mixture model. A new initialization method is applied to guarantee the convergence of the EM algorithm to the global maximum likelihood. Segmentation of the brain image is achieved by the affiliation of each voxel to a selected tissue class. The presented algorithm is used to segment 3D, T1?weighted, simulated and real MR images of the brain into three different tissues, under varying noise conditions. Quantitative results are presented and compared with stat...
Amit Ruf, Hayit Greenspan, Jacob Goldberger
Added 15 Nov 2009
Updated 15 Nov 2009
Type Conference
Year 2005
Where MICCAI
Authors Amit Ruf, Hayit Greenspan, Jacob Goldberger
Comments (0)