We consider the problem of rate and power allocation in a multiple-access channel. Our objective is to obtain rate and power allocation policies that maximize a general concave utility function of average transmission rates on the information theoretic capacity region of the multiple-access channel. Our policies does not require queue-length information. We consider several different scenarios. First, we address the utility maximization problem in a nonfading channel to obtain the optimal operating rates, and present an iterative gradient projection algorithm that uses approximate projection. By exploiting the polymatroid structure of the capacity region, we show that the approximate projection can be implemented in time polynomial in the number of users. Second, we consider resource allocation in a fading channel. Optimal rate and power allocation policies are presented for the case that power control is possible and channel statistics are available. For the case that transmission po...
Ali ParandehGheibi, Atilla Eryilmaz, Asuman E. Ozd