Abstract. Fibered confocal microscopy allows in vivo and in situ imaging with cellular resolution. The potentiality of this imaging modality is extended in this work by using video mosaicing techniques. Two novelties are introduced. A robust estimator based on statistics for Riemannian manifolds is developed to find a globally consistent mapping of the input frames to a common coordinate system. A mosaicing framework using an efficient scattered data fitting method is proposed in order to take into account the non-rigid deformations and the irregular sampling implied by in vivo fibered confocal microscopy. Results on 50 images of a live mouse colon demonstrate the effectiveness of the proposed method.