We consider the Wyner-Ziv (WZ) problem of lossy compression where the decompressor observes a noisy version of the source, whose statistics are unknown. A new family of WZ coding algorithms is proposed and their universal optimality is proven. Compression consists of sliding-window processing followed by Lempel-Ziv (LZ) compression, while the decompressor is based on a modification of the discrete universal denoiser (DUDE) algorithm to take advantage of side information. The new algorithms not only universally attain the fundamental limits, but also suggest a paradigm for practical WZ coding. The effectiveness of our approach is illustrated with experiments on binary images, and English text using a low complexity algorithm motivated by our class of universally optimal WZ codes.