Three versions of a novel adaptive channel estimation approach, exploiting the over-sampled complex exponential basis expansion model (CE-BEM), is presented fordoubly selectivechannels, where we track the BEM coefficients rather than the channel tap gains. Since the time-varying nature of the channel is well captured in the CE-BEM by the known exponential basis functions, the time variations of the (unknown) BEM coefficients are likely much slower than those of the channel, and thus more convenient to track. We propose a "subblockwise" tracking scheme for the BEM coefficients using time-multiplexed (TM) periodically transmitted training symbols. Three adaptive algorithms, including a Kalman filtering scheme based on an assumed autoregressive (AR) model of the BEM coefficients, and two recursive least-squares (RLS) schemes not requiring any model for the BEM coefficients, are investigated for BEM coefficient tracking. Simulation examples illustrate the superior performance of ...
Jitendra K. Tugnait, Shuangchi He, Hyosung Kim