Abstract--This paper develops an optimal decentralized algorithm for sparse signal recovery and demonstrates its application in monitoring localized phenomena using energy-constrained large-scale wireless sensor networks. Capitalizing on the spatial sparsity of localized phenomena, compressive data collection is enforced by turning off a fraction of sensors using a simple random node sleeping strategy, which conserves sensing energy and prolongs network lifetime. In the absence of a fusion center, sparse signal recovery via decentralized in-network processing is developed, based on a consensus optimization formulation and the alternating direction method of multipliers. In the proposed algorithm, each active sensor monitors and recovers its local region only, collaborates with its neighboring active sensors through low-power one-hop communication, and iteratively improves the local estimates until reaching the global optimum. Because each sensor monitors the local region rather than th...