We present a novel approach to fluid simulation, allowing us to take into account the surface energy in a precise manner. This new approach combines a novel, topology-adaptive approach to deformable interface tracking, called the deformable simplicial complexes method (DSC) with an optimization-based, linear finite element method for solving the incompressible Euler equations. The deformable simplicial complexes track the surface of the fluid: the fluid-air interface is represented explicitly as a piecewise linear surface which is a subset of tetrahedralization of the space, such that the interface can be also represented implicitly as a set of faces separating tetrahedra marked as inside from the ones marked as outside. This representation introduces insignificant and controllable numerical diffusion, allows robust topological adaptivity and provides both a volumetric finite element mesh for solving the fluid dynamics equations as well as direct access to the interface geometry data,...