Sciweavers

ICASSP
2011
IEEE

Epileptic seizure prediction using the spatiotemporal correlation structure of intracranial EEG

13 years 4 months ago
Epileptic seizure prediction using the spatiotemporal correlation structure of intracranial EEG
A patient-specific seizure prediction algorithm is proposed that extracts novel multivariate signal coherence features from ECoG recordings and classifies a patient’s pre-seizure state. The algorithm uses space-delay correlation and covariance matrices at several delay scales to extract the spatiotemporal correlation structure from multichannel ECoG signals. Eigenspectra and amplitude features are extracted from the correlation and covariance matrices, followed by dimensionality reduction using principal components analysis, classification using a support vector machine, and temporal integration to produce a seizure prediction score. Evaluation on the Freiburg EEG database produced a sensitivity of 90.8% and false positive rate of .094.
James R. Williamson, Daniel W. Bliss, David W. Bro
Added 20 Aug 2011
Updated 20 Aug 2011
Type Journal
Year 2011
Where ICASSP
Authors James R. Williamson, Daniel W. Bliss, David W. Browne
Comments (0)