This paper considers application of Deep Belief Nets (DBNs) to natural language call routing. DBNs have been successfully applied to a number of tasks, including image, audio and speech classification, thanks to the recent discovery of an efficient learning technique. DBNs learn a multi-layer generative model from unlabeled data and the features discovered by this model are then used to initialize a feed-forward neural network which is fine-tuned with backpropagation. We compare a DBN-initialized neural network to three widely used text classification algorithms; Support Vector machines (SVM), Boosting and Maximum Entropy (MaxEnt). The DBN-based model gives a call–routing classification accuracy that is equal to the best of the other models even though it currently uses an impoverished representation of the input.
Ruhi Sarikaya, Geoffrey E. Hinton, Bhuvana Ramabha