Sciweavers

ICDE
2011
IEEE

Outlier detection on uncertain data: Objects, instances, and inferences

13 years 3 months ago
Outlier detection on uncertain data: Objects, instances, and inferences
—This paper studies the problem of outlier detection on uncertain data. We start with a comprehensive model considering both uncertain objects and their instances. An uncertain object has some inherent attributes and consists of a set of instances which are modeled by a probability density distribution. We detect outliers at both the instance level and the object level. To detect outlier instances, it is a prerequisite to know normal instances. By assuming that uncertain objects with similar properties tend to have similar instances, we learn the normal instances for each uncertain object using the instances of objects with similar properties. Consequently, outlier instances can be detected by comparing against normal ones. Furthermore, we can detect outlier objects most of whose instances are outliers. Technically, we use a Bayesian inference algorithm to solve the problem, and develop an approximation algorithm and a filtering algorithm to speed up the computation. An extensive em...
Bin Jiang, Jian Pei
Added 21 Aug 2011
Updated 21 Aug 2011
Type Journal
Year 2011
Where ICDE
Authors Bin Jiang, Jian Pei
Comments (0)