Sciweavers

ACL
2011

Learning to Win by Reading Manuals in a Monte-Carlo Framework

13 years 3 months ago
Learning to Win by Reading Manuals in a Monte-Carlo Framework
This paper presents a novel approach for leveraging automatically extracted textual knowledge to improve the performance of control applications such as games. Our ultimate goal is to enrich a stochastic player with highlevel guidance expressed in text. Our model jointly learns to identify text that is relevant to a given game state in addition to learning game strategies guided by the selected text. Our method operates in the Monte-Carlo search framework, and learns both text analysis and game strategies based only on environment feedback. We apply our approach to the complex strategy game Civilization II using the official game manual as the text guide. Our results show that a linguistically-informed game-playing agent significantly outperforms its language-unaware counterpart, yielding a 27% absolute improvement and winning over 78% of games when playing against the builtin AI of Civilization II. 1
S. R. K. Branavan, David Silver, Regina Barzilay
Added 23 Aug 2011
Updated 23 Aug 2011
Type Journal
Year 2011
Where ACL
Authors S. R. K. Branavan, David Silver, Regina Barzilay
Comments (0)