—Principal component based anomaly detection has emerged as an important statistical tool for network anomaly detection. It works by projecting summary network information onto a signal and noise sub-spaces and detecting anomalies in the noise sub-space. Recently some major problems where detected with this network anomaly approach. The chief among the problems is the difficulty in selecting a threshold used to declare that the energy in the noise sub-space contains a network anomaly. We show that the reason for this problem is that some of the assumption previously used to select the threshold, namely that the traffic follows a Normal distribution, do not fit the reality of the available network traces. Then, we show that the energy in the noise sub-space can be modeled with the long-tailed Cauchy distribution and use this approximation to calculate reliable thresholds. Our analysis of network traces indicates that the Cauchy distribution approximation of the energy distribution ...