Sciweavers

ICML
2009
IEEE

More generality in efficient multiple kernel learning

15 years 1 months ago
More generality in efficient multiple kernel learning
Recent advances in Multiple Kernel Learning (MKL) have positioned it as an attractive tool for tackling many supervised learning tasks. The development of efficient gradient descent based optimization schemes has made it possible to tackle large scale problems. Simultaneously, MKL based algorithms have achieved very good results on challenging real world applications. Yet, despite their successes, MKL approaches are limited in that they focus on learning a linear combination of given base kernels. In this paper, we observe that existing MKL formulations can be extended to learn general kernel combinations subject to general regularization. This can be achieved while retaining all the efficiency of existing large scale optimization algorithms. To highlight the advantages of generalized kernel learning, we tackle feature selection problems on benchmark vision and UCI databases. It is demonstrated that the proposed formulation can lead to better results not only as compared to traditiona...
Manik Varma, Bodla Rakesh Babu
Added 17 Nov 2009
Updated 17 Nov 2009
Type Conference
Year 2009
Where ICML
Authors Manik Varma, Bodla Rakesh Babu
Comments (0)