We address the problem of designing distributed algorithms for large scale networks that are robust to Byzantine faults. We consider a message passing, full information model: the adversary is malicious, controls a constant fraction of processors, and can view all messages in a round before sending out its own messages for that round. Furthermore, each bad processor may send an unlimited number of messages. The only constraint on the adversary is that it must choose its corrupt processors at the start, without knowledge of the processors’ private random bits. A good quorum is a set of O(log n) processors, which contains a majority of good processors. In this paper, we give a synchronous algorithm which uses polylogarithmic time and ËœO( √ n) bits of communication per processor to bring all processors to agreement on a collection of n good quorums, solving Byzantine agreement as well. The collection is balanced in that no processor is in more than O(log n) quorums. This yields the ï...