Abstract. Frequent itemset mining can be regarded as advanced database querying where a user specifies the dataset to be mined and constraints to be satisfied by the discovered itemsets. One of the research directions influenced by the above observation is the processing of sets of frequent itemset queries operating on overlapping datasets. Several methods of solving this problem have been proposed, all of them assuming selective access to the partitions of data determined by the overlapping of queries, and tested so far only on flat files. In this paper we theoretically and experimentally analyze the influence of data access paths available in database systems on the methods of frequent itemset query set processing, which is crucial from the point of view of their possible applications.