We consider a conditioned Galton–Watson tree and prove an estimate of the number of pairs of vertices with a given distance, or, equivalently, the number of paths of a given length. We give two proofs of this result, one probabilistic and the other using generating functions and singularity analysis. Moreover, the second proof yields a more general estimate for generating functions, which is used to prove a conjecture by Bousquet–M´elou and Janson [5], saying that the vertical profile of a randomly labelled conditioned Galton–Watson tree converges in distribution, after suitable normalization, to the density of ISE (Integrated Superbrownian Excursion).