Aggregate similarity search, a.k.a. aggregate nearest neighbor (Ann) query, finds many useful applications in spatial and multimedia databases. Given a group Q of M query objects, it retrieves the most (or top-k) similar object to Q from a database P, where the similarity is an aggregation (e.g., sum, max) of the distances between the retrieved object p and all the objects in Q. In this paper, we propose an added flexibility to the query definition, where the similarity is an aggregation over the distances between p and any subset of