In this paper we examine the general problem of generating preferred explanations for observed behavior with respect to a model of the behavior of a dynamical system. This problem arises in a diversity of applications including diagnosis of dynamical systems and activity recognition. We provide a logical characterization of the notion of an explanation. To generate explanations we identify and exploit a correspondence between explanation generation and planning. The determination of good explanations requires additional domainspecific knowledge which we represent as preferences over explanations. The nature of explanations requires us to formulate preferences in a somewhat retrodictive fashion by utilizing Past Linear Temporal Logic. We propose methods for exploiting these somewhat unique preferences effectively within state-of-the-art planners and illustrate the feasibility of generating (preferred) explanations via planning.
Shirin Sohrabi, Jorge A. Baier, Sheila A. McIlrait