Abstract. Cloud computing promises a cost effective enabling technology to outsource storage and massively parallel computations. However, existing approaches for provably secure outsourcing of data and arbitrary computations are either based on tamper-proof hardware or fully homomorphic encryption. The former approaches are not scaleable, while the latter ones are currently not efficient enough to be used in practice. We propose an architecture and protocols that accumulate slow secure computations over time and provide the possibility to query them in parallel on demand by leveraging the benefits of cloud computing. In our approach, the user communicates with a resource-constrained Trusted Cloud (either a private cloud or built from multiple secure hardware modules) which encrypts algorithms and data to be stored and later on queried in the powerful but untrusted Commodity Cloud. We split our protocols such that the Trusted Cloud performs security-critical precomputations in the se...