Sciweavers

EMNLP
2011

Dual Decomposition with Many Overlapping Components

12 years 10 months ago
Dual Decomposition with Many Overlapping Components
Dual decomposition has been recently proposed as a way of combining complementary models, with a boost in predictive power. However, in cases where lightweight decompositions are not readily available (e.g., due to the presence of rich features or logical constraints), the original subgradient algorithm is inefficient. We sidestep that difficulty by adopting an augmented Lagrangian method that accelerates model consensus by regularizing towards the averaged votes. We show how first-order logical constraints can be handled efficiently, even though the corresponding subproblems are no longer combinatorial, and report experiments in dependency parsing, with state-of-the-art results.
André L. Martins, Noah A. Smith, Már
Added 20 Dec 2011
Updated 20 Dec 2011
Type Journal
Year 2011
Where EMNLP
Authors André L. Martins, Noah A. Smith, Mário A. T. Figueiredo, Pedro M. Q. Aguiar
Comments (0)