Rich representations in reinforcement learning have been studied for the purpose of enabling generalization and making learning feasible in large state spaces. We introduce Object-Oriented MDPs (OO-MDPs), a representation based on objects and their interactions, which is a natural way of modeling environments and offers important generalization opportunities. We introduce a learning algorithm for deterministic OO-MDPs and prove a polynomial bound on its sample complexity. We illustrate the performance gains of our representation and algorithm in the wellknown Taxi domain, plus a real-life videogame.
Carlos Diuk, Andre Cohen, Michael L. Littman